NOTE

- Follow the book formulas
- Formatting error can lead to wrong formula In the slides.
- Strictly follow the book

Least Squares

Linear Trend Projection

- Used for forecasting linear trend line
- Assumes relationship between response variable, Y, and time, X, is a linear function

```
Yi a bX i
```

- Estimated by least squares method
- Minimizes sum of squared errors

Linear Trend Projection Model

Least Squares Equations

Equation: $\quad \hat{Y}_{i}=a+b x_{i}$

Slope:

$$
b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
$$

Y-Intercept: $\quad a=\bar{y}-b \bar{x}$

Using a Trend Line

Year	Demand
1997	74
1998	79
1999	80
2000	90
2001	105
2002	142
2003	122

The demand for electrical power at N.Y.Edison over the years $1997-2003$ is given at the left. Find the overall trend.

Linear Regression Model

- Shows linear relationship between dependent \& explanatory variables
- Example: Sales \& advertising (not time)

Linear Regression Model

THEORY OF SIMPLE REGRESSION ANALYSIS

Fit a straight line over the plot

Linear Regression Equations

Equation: $\quad \hat{Y}_{i}=a+b x_{i}$
Slope:

$$
b=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
$$

Y-Intercept: $\quad \mathrm{a}=\overline{\mathrm{y}}-\mathrm{b} \overline{\mathrm{x}}$

Interpretation of Coefficients

- Slope (b)
-Estimated Y changes by b for each 1 unit increase in X
- If $b=2$, then sales (Y) is expected to increase by 2 for each 1 unit increase in advertising (X)
- Y-intercept (a)
- Average value of Y when $X=0$
- If $a=4$, then average sales (Y) is expected to be 4 when advertising (X) is 0

Random Error Variation

- Variation of actual Y from predicted Y
- Measured by standard error of estimate
- Sample standard deviation of errors
- Denoted $S_{Y, X}$
- Affects several factors
- Prediction accuracy

Least Squares Assumptions

- Relationship is assumed to be linear. Plot the data first - if curve appears to be present, use curvilinear analysis.
- Relationship is assumed to hold only within or slightly outside data range. Do not attempt to predict time periods far beyond the range of the data base.
- Deviations around least squares line are assumed to be random.

Using Regression Analysis to Forecast

Nodel's Sales
(\$100,000's)
2.0
3.0
2.5
2.0
2.0
3.5

Local Payroll
(\$100,000,000)
1
3
4
2
1
7

Using Regression Analysis to Forecast

Sales, Y	Payroll, X	X^{2}	XY
2.0	1	1	2.0
3.0	3	9	9.0
2.5	4	16	10.0
2.0	2	4	4.0
2.0	1	1	2.0
3.5	2	49	24.5
$\Sigma \mathrm{Y}=15$	EX $=18$	$\Sigma \mathrm{X}^{2}=80$	EXY $=51.5$

Using Regression Analysis to Forecast

Calculating the required parameters:

$$
\begin{aligned}
\overline{\mathrm{X}} & =\frac{\Sigma \mathrm{X}}{6}=\frac{18}{3}=3 \\
\overline{\mathrm{Y}} & =\frac{\Sigma \mathrm{Y}}{6}=\frac{15}{6}=2.5 \\
\mathrm{~b} & =\frac{\Sigma \mathrm{XY}-\mathrm{n} \overline{\mathrm{X} \overline{\mathrm{Y}}}}{\Sigma \mathrm{X} \mathrm{~m}^{2}-\mathrm{nX} 2} \\
& =\frac{51.5-6^{2} * 3 * 2.5}{80-6^{*} 3^{2}}=0.25 \\
\mathrm{a} & =\overline{\mathrm{Y}}-\mathrm{b} \overline{\mathrm{X}}=2.5-0.25 \quad * 3=1.75
\end{aligned}
$$

Standard Error of the Estimate

$S_{Y, X}=\sqrt{\frac{\sum\left(Y-Y_{c}\right)}{n-}}$
where
$Y-Y-$ value of each data point
$Y_{c}=$ value of the dependent variable
computed from the regression equation
$n=$ number of data points
or:

$$
S_{Y, X}=\sqrt{\frac{\sum Y-a \sum Y-b \sum X Y}{n-}}
$$

Nodel's Calculations

\boldsymbol{Y}	\boldsymbol{X}	$\boldsymbol{X}^{\mathbf{2}}$	$\boldsymbol{X Y}$	\boldsymbol{Y}^{2}
2.0	1	1	2.0	4.0
3.0	3	9	9.0	9.0
2.5	4	16	10.0	6.25
2.0	2	4	4.0	4.0
2.0	1	1	2.0	4.0
$\underline{3.5}$	$\underline{7}$	$\underline{49}$	$\underline{24.5}$	$\underline{12.25}$
$\bullet Y=15.0$	$\bullet X=18$	$\bullet X^{2}=80$	$\bullet X Y=51.5$	$\bullet Y^{2}=39.5$

Standard Error of Estimate

$$
\begin{aligned}
S_{Y, X} & =\sqrt{\frac{\sum Y-a \sum Y-b \sum X Y}{n-}} \\
S_{Y, X} & =\sqrt{\frac{.-\left(. \frac{1 .}{}\right)(.)-(.)(}{-}} \\
& =\sqrt{.}=.
\end{aligned}
$$

Correlation

- Answers: 'how strong is the linear relationship between the variables?'
- Coefficient of correlation Sample correlation coefficient denoted r
- Values range from - 1 to +1
- Measures degree of association
- Used mainly for understanding

Correlation Coefficient

$$
\mathrm{r}=\frac{\mathrm{n} \Sigma \mathrm{X}-\Sigma \mathrm{X} \Sigma \mathrm{Y}}{\sqrt{\left[\mathrm{n} \Sigma \mathrm{X}^{2}-(\Sigma \mathrm{X})^{2}\right]\left[\mathrm{n} \Sigma \mathrm{Y}^{2}-(\Sigma \mathrm{Y}){ }^{2}\right]}}
$$

Nodel's Calculations continued

$$
\begin{aligned}
r & =\text { Correlatio n.Coefficien } t(\text { see .book }) \\
& =\frac{6 * 51.5-18 * 15.0}{\sqrt{\left(6 * 80-18^{2}\right)\left(6 * 39.5-15.0^{2}\right)}} \\
& =\frac{309-270}{\sqrt{156 * 12}} \\
& =\frac{39}{\sqrt{1872}} \\
& =\frac{39}{43.3} \\
& =0.901
\end{aligned}
$$

Coefficient of Correlation Values

Perfect
Negative
Correlation

$\underset{-1.0}{\nabla}$

Increasing degree of negative correlation

No Correlation

Perfect
 Positive
 Correlation

∇		
	+.5	+1.0

Increasing degree of positive correlation

Coefficient of Correlation and Regression Model

$r^{2}=$ square of correlation coefficient (r), is the percent of the variation in y that is explained by the regression equation

