NOTE

- Follow the book formulas
- Formatting error can lead to wrong formula In the slides.
- Strictly follow the book

Least Squares

Actual and the Least Squares

Linear Trend Projection

- Used for forecasting linear trend line
- Assumes relationship between response variable, Y, and time, X, is a linear function Y_i = a + bX_i
- Estimated by least squares method

 Minimizes sum of squared errors

Linear Trend Projection Model

Least Squares Equations

Equation: $\hat{Y}_i = a + bx_i$

Slope:

 $b = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} \,\overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$

Y-Intercept:
$$a = \overline{y} - b\overline{x}$$

Using a Trend Line

Year	Demand		
1997	74		
1998	79		
1999	80		
2000	90		
2001	105		
2002	142		
2003	122		

The demand for electrical power at N.Y.Edison over the years 1997 – 2003 is given at the left. Find the overall trend.

Linear Regression Model

 Shows linear relationship between dependent & explanatory variables

- Example: Sales & advertising (not time)

Linear Regression Model

THEORY OF SIMPLE REGRESSION ANALYSIS

		Yield	100
Data No	Temperature Deg C (X)	% (Y)	90
1	100	45	85
2	110	51	80
3	120	54	14 14 10
4	130	61	
5	140	66	60
6	150	70	54
7	160	74	50 45
8	170	78	40
9	180	85	100 110 120 130 140 150 160 170 180 190 Temp (Deg C)
10	190	89	Actual Data

Fit a straight line over the plot

Linear Regression Equations

Equation:

$$\hat{Y}_i = a + bx_i$$

Slope:

$$b = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n\overline{x} \overline{y}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}$$

Y-Intercept: $a = \overline{y} - b\overline{x}$

Interpretation of Coefficients

- Slope (b)
 - Estimated Y changes by *b* for each 1 unit increase in X
 - If b = 2, then sales (Y) is expected to increase by 2 for each 1 unit increase in advertising (X)
- Y-intercept (a)
 - -Average value of Y when X = 0
 - If a = 4, then average sales (Y) is expected to be 4 when advertising (X) is 0

Random Error Variation

- Variation of actual Y from predicted Y
- Measured by standard error of estimate
 - Sample standard deviation of errors
 - Denoted $S_{Y,X}$
- Affects several factors
 - Prediction accuracy

Least Squares Assumptions

- Relationship is assumed to be linear. Plot the data first if curve appears to be present, use curvilinear analysis.
- Relationship is assumed to hold only within or slightly outside data range. Do not attempt to predict time periods far beyond the range of the data base.
- Deviations around least squares line are assumed to be random.

Using Regression Analysis to Forecast

Y Х Nodel's Sales Local Payroll (\$100,000's) (\$100,000,000) 2.0 3.0 3 2.5 4 2.0 2 2.0 3.5 7

Using Regression Analysis to Forecast

Sales, Y	Payroll, X	X ²	XY
2.0	1	1	2.0
3.0	3	9	9.0
2.5	4	16	10.0
2.0	2	4	4.0
2.0	1	1	2.0
3.5	7	49	24.5
$\Sigma Y = 15$	$\Sigma X = 18$	$\Sigma X^2 = 80$	$\Sigma XY = 51.5$

Using Regression Analysis to Forecast

Calculating the required parameters:

$$\overline{X} = \frac{X}{6} = \frac{18}{3} = 3$$

$$\overline{Y} = \frac{Y}{6} = \frac{15}{6} = 2.5$$

$$b = \frac{XY}{X} - \frac{n}{2} \frac{\overline{X}}{\overline{X}} = \frac{15}{2} - \frac{15}{2}$$

$$= \frac{51.5}{X} - \frac{6}{3} + \frac{3}{2} + \frac{2.5}{2} = 0.25$$

$$a = \overline{Y} - b \overline{X} = 2.5 - 0.25 + 3 = 1.75$$

Standard Error of the Estimate

$$S_{Y,X} = \sqrt{\frac{\sum (Y - Y_{c})^{2}}{n - 2}}$$

where

Y - Y - value of each data point Y_c = value of the dependent variable computed from the regression equation n = number of data points

$$S_{Y,X} = \sqrt{\frac{\sum Y^2 - a\sum Y - b\sum XY}{n-2}}$$

Nodel's Calculations

Y	X	X ²	XY	Y ²
2.0	1	1	2.0	4.0
3.0	3	9	9.0	9.0
2.5	4	16	10.0	6.25
2.0	2	4	4.0	4.0
2.0	1	1	2.0	4.0
_3.5	_7	_49	24.5	12.25
• $Y = 15.0$	• <i>X</i> = 18	• $X^2 = 80$	• $XY = 51.5$	• $Y^2 = 39.5$

Standard Error of Estimate

$$S_{Y,X} = \sqrt{\frac{\sum Y^2 - a \sum Y - b \sum XY}{n-2}}$$

$$S_{Y,X} = \sqrt{\frac{3.95 - (1.7.5)(1.50) - (0.2.5)(5.15)}{6-2}}$$

= $\sqrt{0.0937} = 0.306$

Correlation

- Answers: '*how strong* is the linear relationship between the variables?'
- Coefficient of correlation Sample correlation coefficient denoted *r*
 - -Values range from -1 to +1
 - Measures degree of association
- Used mainly for understanding

Correlation Coefficient

$$\mathbf{r} = \frac{\mathbf{n} \Sigma \mathbf{X} - \mathbf{X} \mathbf{Y}}{\sqrt{\left[\mathbf{n} \Sigma \mathbf{X}^{2} - (\Sigma \mathbf{X})^{2}\right] \left[\mathbf{n} \Sigma \mathbf{Y}^{2} - (\Sigma \mathbf{Y})^{2}\right]}}$$

Nodel's Calculations - continued

 $\mathbf{r} = Correlatio \ n.Coefficien \ t(see.book)$ 6*51.5 - 18*15.0 $= \frac{1}{\sqrt{(6*80-18^2)(6*39.5-15.0^2)}}$ $=\frac{309-270}{\sqrt{156*12}}$ 39 $=\frac{1}{\sqrt{1872}}$ $=\frac{39}{43.3}$ = 0.901

Coefficient of Correlation Values

Coefficient of Correlation and Regression Model

 r^2 = square of correlation coefficient (r), is the percent of the variation in y that is explained by the regression equation